// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Linux system calls.
// This file is compiled as ordinary Go code,
// but it is also input to mksyscall,
// which parses the //sys lines and generates system call stubs.
// Note that sometimes we use a lowercase //sys name and
// wrap it in our own nicer implementation.
package unix
import (
"encoding/binary"
"strconv"
"syscall"
"time"
"unsafe"
)
/ *
* Wrapped
* /
func Access ( path string , mode uint32 ) ( err error ) {
return Faccessat ( AT_FDCWD , path , mode , 0 )
}
func Chmod ( path string , mode uint32 ) ( err error ) {
return Fchmodat ( AT_FDCWD , path , mode , 0 )
}
func Chown ( path string , uid int , gid int ) ( err error ) {
return Fchownat ( AT_FDCWD , path , uid , gid , 0 )
}
func Creat ( path string , mode uint32 ) ( fd int , err error ) {
return Open ( path , O_CREAT | O_WRONLY | O_TRUNC , mode )
}
func EpollCreate ( size int ) ( fd int , err error ) {
if size <= 0 {
return - 1 , EINVAL
}
return EpollCreate1 ( 0 )
}
//sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
//sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
func FanotifyMark ( fd int , flags uint , mask uint64 , dirFd int , pathname string ) ( err error ) {
if pathname == "" {
return fanotifyMark ( fd , flags , mask , dirFd , nil )
}
p , err := BytePtrFromString ( pathname )
if err != nil {
return err
}
return fanotifyMark ( fd , flags , mask , dirFd , p )
}
//sys fchmodat(dirfd int, path string, mode uint32) (err error)
func Fchmodat ( dirfd int , path string , mode uint32 , flags int ) ( err error ) {
// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
// and check the flags. Otherwise the mode would be applied to the symlink
// destination which is not what the user expects.
if flags &^ AT_SYMLINK_NOFOLLOW != 0 {
return EINVAL
} else if flags & AT_SYMLINK_NOFOLLOW != 0 {
return EOPNOTSUPP
}
return fchmodat ( dirfd , path , mode )
}
func InotifyInit ( ) ( fd int , err error ) {
return InotifyInit1 ( 0 )
}
//sys ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL
//sys ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL
// ioctl itself should not be exposed directly, but additional get/set functions
// for specific types are permissible. These are defined in ioctl.go and
// ioctl_linux.go.
//
// The third argument to ioctl is often a pointer but sometimes an integer.
// Callers should use ioctlPtr when the third argument is a pointer and ioctl
// when the third argument is an integer.
//
// TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr.
//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
func Link ( oldpath string , newpath string ) ( err error ) {
return Linkat ( AT_FDCWD , oldpath , AT_FDCWD , newpath , 0 )
}
func Mkdir ( path string , mode uint32 ) ( err error ) {
return Mkdirat ( AT_FDCWD , path , mode )
}
func Mknod ( path string , mode uint32 , dev int ) ( err error ) {
return Mknodat ( AT_FDCWD , path , mode , dev )
}
func Open ( path string , mode int , perm uint32 ) ( fd int , err error ) {
return openat ( AT_FDCWD , path , mode | O_LARGEFILE , perm )
}
//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
func Openat ( dirfd int , path string , flags int , mode uint32 ) ( fd int , err error ) {
return openat ( dirfd , path , flags | O_LARGEFILE , mode )
}
//sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
func Openat2 ( dirfd int , path string , how * OpenHow ) ( fd int , err error ) {
return openat2 ( dirfd , path , how , SizeofOpenHow )
}
func Pipe ( p [ ] int ) error {
return Pipe2 ( p , 0 )
}
//sysnb pipe2(p *[2]_C_int, flags int) (err error)
func Pipe2 ( p [ ] int , flags int ) error {
if len ( p ) != 2 {
return EINVAL
}
var pp [ 2 ] _C_int
err := pipe2 ( & pp , flags )
if err == nil {
p [ 0 ] = int ( pp [ 0 ] )
p [ 1 ] = int ( pp [ 1 ] )
}
return err
}
//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
func Ppoll ( fds [ ] PollFd , timeout * Timespec , sigmask * Sigset_t ) ( n int , err error ) {
if len ( fds ) == 0 {
return ppoll ( nil , 0 , timeout , sigmask )
}
return ppoll ( & fds [ 0 ] , len ( fds ) , timeout , sigmask )
}
func Poll ( fds [ ] PollFd , timeout int ) ( n int , err error ) {
var ts * Timespec
if timeout >= 0 {
ts = new ( Timespec )
* ts = NsecToTimespec ( int64 ( timeout ) * 1e6 )
}
return Ppoll ( fds , ts , nil )
}
//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
func Readlink ( path string , buf [ ] byte ) ( n int , err error ) {
return Readlinkat ( AT_FDCWD , path , buf )
}
func Rename ( oldpath string , newpath string ) ( err error ) {
return Renameat ( AT_FDCWD , oldpath , AT_FDCWD , newpath )
}
func Rmdir ( path string ) error {
return Unlinkat ( AT_FDCWD , path , AT_REMOVEDIR )
}
//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
func Symlink ( oldpath string , newpath string ) ( err error ) {
return Symlinkat ( oldpath , AT_FDCWD , newpath )
}
func Unlink ( path string ) error {
return Unlinkat ( AT_FDCWD , path , 0 )
}
//sys Unlinkat(dirfd int, path string, flags int) (err error)
func Utimes ( path string , tv [ ] Timeval ) error {
if tv == nil {
err := utimensat ( AT_FDCWD , path , nil , 0 )
if err != ENOSYS {
return err
}
return utimes ( path , nil )
}
if len ( tv ) != 2 {
return EINVAL
}
var ts [ 2 ] Timespec
ts [ 0 ] = NsecToTimespec ( TimevalToNsec ( tv [ 0 ] ) )
ts [ 1 ] = NsecToTimespec ( TimevalToNsec ( tv [ 1 ] ) )
err := utimensat ( AT_FDCWD , path , ( * [ 2 ] Timespec ) ( unsafe . Pointer ( & ts [ 0 ] ) ) , 0 )
if err != ENOSYS {
return err
}
return utimes ( path , ( * [ 2 ] Timeval ) ( unsafe . Pointer ( & tv [ 0 ] ) ) )
}
//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
func UtimesNano ( path string , ts [ ] Timespec ) error {
return UtimesNanoAt ( AT_FDCWD , path , ts , 0 )
}
func UtimesNanoAt ( dirfd int , path string , ts [ ] Timespec , flags int ) error {
if ts == nil {
return utimensat ( dirfd , path , nil , flags )
}
if len ( ts ) != 2 {
return EINVAL
}
return utimensat ( dirfd , path , ( * [ 2 ] Timespec ) ( unsafe . Pointer ( & ts [ 0 ] ) ) , flags )
}
func Futimesat ( dirfd int , path string , tv [ ] Timeval ) error {
if tv == nil {
return futimesat ( dirfd , path , nil )
}
if len ( tv ) != 2 {
return EINVAL
}
return futimesat ( dirfd , path , ( * [ 2 ] Timeval ) ( unsafe . Pointer ( & tv [ 0 ] ) ) )
}
func Futimes ( fd int , tv [ ] Timeval ) ( err error ) {
// Believe it or not, this is the best we can do on Linux
// (and is what glibc does).
return Utimes ( "/proc/self/fd/" + strconv . Itoa ( fd ) , tv )
}
const ImplementsGetwd = true
//sys Getcwd(buf []byte) (n int, err error)
func Getwd ( ) ( wd string , err error ) {
var buf [ PathMax ] byte
n , err := Getcwd ( buf [ 0 : ] )
if err != nil {
return "" , err
}
// Getcwd returns the number of bytes written to buf, including the NUL.
if n < 1 || n > len ( buf ) || buf [ n - 1 ] != 0 {
return "" , EINVAL
}
// In some cases, Linux can return a path that starts with the
// "(unreachable)" prefix, which can potentially be a valid relative
// path. To work around that, return ENOENT if path is not absolute.
if buf [ 0 ] != '/' {
return "" , ENOENT
}
return string ( buf [ 0 : n - 1 ] ) , nil
}
func Getgroups ( ) ( gids [ ] int , err error ) {
n , err := getgroups ( 0 , nil )
if err != nil {
return nil , err
}
if n == 0 {
return nil , nil
}
// Sanity check group count. Max is 1<<16 on Linux.
if n < 0 || n > 1 << 20 {
return nil , EINVAL
}
a := make ( [ ] _Gid_t , n )
n , err = getgroups ( n , & a [ 0 ] )
if err != nil {
return nil , err
}
gids = make ( [ ] int , n )
for i , v := range a [ 0 : n ] {
gids [ i ] = int ( v )
}
return
}
func Setgroups ( gids [ ] int ) ( err error ) {
if len ( gids ) == 0 {
return setgroups ( 0 , nil )
}
a := make ( [ ] _Gid_t , len ( gids ) )
for i , v := range gids {
a [ i ] = _Gid_t ( v )
}
return setgroups ( len ( a ) , & a [ 0 ] )
}
type WaitStatus uint32
// Wait status is 7 bits at bottom, either 0 (exited),
// 0x7F (stopped), or a signal number that caused an exit.
// The 0x80 bit is whether there was a core dump.
// An extra number (exit code, signal causing a stop)
// is in the high bits. At least that's the idea.
// There are various irregularities. For example, the
// "continued" status is 0xFFFF, distinguishing itself
// from stopped via the core dump bit.
const (
mask = 0x7F
core = 0x80
exited = 0x00
stopped = 0x7F
shift = 8
)
func ( w WaitStatus ) Exited ( ) bool { return w & mask == exited }
func ( w WaitStatus ) Signaled ( ) bool { return w & mask != stopped && w & mask != exited }
func ( w WaitStatus ) Stopped ( ) bool { return w & 0xFF == stopped }
func ( w WaitStatus ) Continued ( ) bool { return w == 0xFFFF }
func ( w WaitStatus ) CoreDump ( ) bool { return w . Signaled ( ) && w & core != 0 }
func ( w WaitStatus ) ExitStatus ( ) int {
if ! w . Exited ( ) {
return - 1
}
return int ( w >> shift ) & 0xFF
}
func ( w WaitStatus ) Signal ( ) syscall . Signal {
if ! w . Signaled ( ) {
return - 1
}
return syscall . Signal ( w & mask )
}
func ( w WaitStatus ) StopSignal ( ) syscall . Signal {
if ! w . Stopped ( ) {
return - 1
}
return syscall . Signal ( w >> shift ) & 0xFF
}
func ( w WaitStatus ) TrapCause ( ) int {
if w . StopSignal ( ) != SIGTRAP {
return - 1
}
return int ( w >> shift ) >> 8
}
//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
func Wait4 ( pid int , wstatus * WaitStatus , options int , rusage * Rusage ) ( wpid int , err error ) {
var status _C_int
wpid , err = wait4 ( pid , & status , options , rusage )
if wstatus != nil {
* wstatus = WaitStatus ( status )
}
return
}
//sys Waitid(idType int, id int, info *Siginfo, options int, rusage *Rusage) (err error)
func Mkfifo ( path string , mode uint32 ) error {
return Mknod ( path , mode | S_IFIFO , 0 )
}
func Mkfifoat ( dirfd int , path string , mode uint32 ) error {
return Mknodat ( dirfd , path , mode | S_IFIFO , 0 )
}
func ( sa * SockaddrInet4 ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Port < 0 || sa . Port > 0xFFFF {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_INET
p := ( * [ 2 ] byte ) ( unsafe . Pointer ( & sa . raw . Port ) )
p [ 0 ] = byte ( sa . Port >> 8 )
p [ 1 ] = byte ( sa . Port )
sa . raw . Addr = sa . Addr
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrInet4 , nil
}
func ( sa * SockaddrInet6 ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Port < 0 || sa . Port > 0xFFFF {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_INET6
p := ( * [ 2 ] byte ) ( unsafe . Pointer ( & sa . raw . Port ) )
p [ 0 ] = byte ( sa . Port >> 8 )
p [ 1 ] = byte ( sa . Port )
sa . raw . Scope_id = sa . ZoneId
sa . raw . Addr = sa . Addr
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrInet6 , nil
}
func ( sa * SockaddrUnix ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
name := sa . Name
n := len ( name )
if n >= len ( sa . raw . Path ) {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_UNIX
for i := 0 ; i < n ; i ++ {
sa . raw . Path [ i ] = int8 ( name [ i ] )
}
// length is family (uint16), name, NUL.
sl := _Socklen ( 2 )
if n > 0 {
sl += _Socklen ( n ) + 1
}
if sa . raw . Path [ 0 ] == '@' {
sa . raw . Path [ 0 ] = 0
// Don't count trailing NUL for abstract address.
sl --
}
return unsafe . Pointer ( & sa . raw ) , sl , nil
}
// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
type SockaddrLinklayer struct {
Protocol uint16
Ifindex int
Hatype uint16
Pkttype uint8
Halen uint8
Addr [ 8 ] byte
raw RawSockaddrLinklayer
}
func ( sa * SockaddrLinklayer ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Ifindex < 0 || sa . Ifindex > 0x7fffffff {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_PACKET
sa . raw . Protocol = sa . Protocol
sa . raw . Ifindex = int32 ( sa . Ifindex )
sa . raw . Hatype = sa . Hatype
sa . raw . Pkttype = sa . Pkttype
sa . raw . Halen = sa . Halen
sa . raw . Addr = sa . Addr
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrLinklayer , nil
}
// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
type SockaddrNetlink struct {
Family uint16
Pad uint16
Pid uint32
Groups uint32
raw RawSockaddrNetlink
}
func ( sa * SockaddrNetlink ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_NETLINK
sa . raw . Pad = sa . Pad
sa . raw . Pid = sa . Pid
sa . raw . Groups = sa . Groups
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrNetlink , nil
}
// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
// using the HCI protocol.
type SockaddrHCI struct {
Dev uint16
Channel uint16
raw RawSockaddrHCI
}
func ( sa * SockaddrHCI ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_BLUETOOTH
sa . raw . Dev = sa . Dev
sa . raw . Channel = sa . Channel
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrHCI , nil
}
// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
// using the L2CAP protocol.
type SockaddrL2 struct {
PSM uint16
CID uint16
Addr [ 6 ] uint8
AddrType uint8
raw RawSockaddrL2
}
func ( sa * SockaddrL2 ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_BLUETOOTH
psm := ( * [ 2 ] byte ) ( unsafe . Pointer ( & sa . raw . Psm ) )
psm [ 0 ] = byte ( sa . PSM )
psm [ 1 ] = byte ( sa . PSM >> 8 )
for i := 0 ; i < len ( sa . Addr ) ; i ++ {
sa . raw . Bdaddr [ i ] = sa . Addr [ len ( sa . Addr ) - 1 - i ]
}
cid := ( * [ 2 ] byte ) ( unsafe . Pointer ( & sa . raw . Cid ) )
cid [ 0 ] = byte ( sa . CID )
cid [ 1 ] = byte ( sa . CID >> 8 )
sa . raw . Bdaddr_type = sa . AddrType
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrL2 , nil
}
// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
// using the RFCOMM protocol.
//
// Server example:
//
// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
// _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
// Channel: 1,
// Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
// })
// _ = Listen(fd, 1)
// nfd, sa, _ := Accept(fd)
// fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
// Read(nfd, buf)
//
// Client example:
//
// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
// _ = Connect(fd, &SockaddrRFCOMM{
// Channel: 1,
// Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
// })
// Write(fd, []byte(`hello`))
type SockaddrRFCOMM struct {
// Addr represents a bluetooth address, byte ordering is little-endian.
Addr [ 6 ] uint8
// Channel is a designated bluetooth channel, only 1-30 are available for use.
// Since Linux 2.6.7 and further zero value is the first available channel.
Channel uint8
raw RawSockaddrRFCOMM
}
func ( sa * SockaddrRFCOMM ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_BLUETOOTH
sa . raw . Channel = sa . Channel
sa . raw . Bdaddr = sa . Addr
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrRFCOMM , nil
}
// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
// The RxID and TxID fields are used for transport protocol addressing in
// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
//
// The SockaddrCAN struct must be bound to the socket file descriptor
// using Bind before the CAN socket can be used.
//
// // Read one raw CAN frame
// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
// addr := &SockaddrCAN{Ifindex: index}
// Bind(fd, addr)
// frame := make([]byte, 16)
// Read(fd, frame)
//
// The full SocketCAN documentation can be found in the linux kernel
// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
type SockaddrCAN struct {
Ifindex int
RxID uint32
TxID uint32
raw RawSockaddrCAN
}
func ( sa * SockaddrCAN ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Ifindex < 0 || sa . Ifindex > 0x7fffffff {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_CAN
sa . raw . Ifindex = int32 ( sa . Ifindex )
rx := ( * [ 4 ] byte ) ( unsafe . Pointer ( & sa . RxID ) )
for i := 0 ; i < 4 ; i ++ {
sa . raw . Addr [ i ] = rx [ i ]
}
tx := ( * [ 4 ] byte ) ( unsafe . Pointer ( & sa . TxID ) )
for i := 0 ; i < 4 ; i ++ {
sa . raw . Addr [ i + 4 ] = tx [ i ]
}
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrCAN , nil
}
// SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
// protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
// on the purposes of the fields, check the official linux kernel documentation
// available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
type SockaddrCANJ1939 struct {
Ifindex int
Name uint64
PGN uint32
Addr uint8
raw RawSockaddrCAN
}
func ( sa * SockaddrCANJ1939 ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Ifindex < 0 || sa . Ifindex > 0x7fffffff {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_CAN
sa . raw . Ifindex = int32 ( sa . Ifindex )
n := ( * [ 8 ] byte ) ( unsafe . Pointer ( & sa . Name ) )
for i := 0 ; i < 8 ; i ++ {
sa . raw . Addr [ i ] = n [ i ]
}
p := ( * [ 4 ] byte ) ( unsafe . Pointer ( & sa . PGN ) )
for i := 0 ; i < 4 ; i ++ {
sa . raw . Addr [ i + 8 ] = p [ i ]
}
sa . raw . Addr [ 12 ] = sa . Addr
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrCAN , nil
}
// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
// SockaddrALG enables userspace access to the Linux kernel's cryptography
// subsystem. The Type and Name fields specify which type of hash or cipher
// should be used with a given socket.
//
// To create a file descriptor that provides access to a hash or cipher, both
// Bind and Accept must be used. Once the setup process is complete, input
// data can be written to the socket, processed by the kernel, and then read
// back as hash output or ciphertext.
//
// Here is an example of using an AF_ALG socket with SHA1 hashing.
// The initial socket setup process is as follows:
//
// // Open a socket to perform SHA1 hashing.
// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
// unix.Bind(fd, addr)
// // Note: unix.Accept does not work at this time; must invoke accept()
// // manually using unix.Syscall.
// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
//
// Once a file descriptor has been returned from Accept, it may be used to
// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
// may be re-used repeatedly with subsequent Write and Read operations.
//
// When hashing a small byte slice or string, a single Write and Read may
// be used:
//
// // Assume hashfd is already configured using the setup process.
// hash := os.NewFile(hashfd, "sha1")
// // Hash an input string and read the results. Each Write discards
// // previous hash state. Read always reads the current state.
// b := make([]byte, 20)
// for i := 0; i < 2; i++ {
// io.WriteString(hash, "Hello, world.")
// hash.Read(b)
// fmt.Println(hex.EncodeToString(b))
// }
// // Output:
// // 2ae01472317d1935a84797ec1983ae243fc6aa28
// // 2ae01472317d1935a84797ec1983ae243fc6aa28
//
// For hashing larger byte slices, or byte streams such as those read from
// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
// the hash digest instead of creating a new one for a given chunk and finalizing it.
//
// // Assume hashfd and addr are already configured using the setup process.
// hash := os.NewFile(hashfd, "sha1")
// // Hash the contents of a file.
// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
// b := make([]byte, 4096)
// for {
// n, err := f.Read(b)
// if err == io.EOF {
// break
// }
// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
// }
// hash.Read(b)
// fmt.Println(hex.EncodeToString(b))
// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
//
// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
type SockaddrALG struct {
Type string
Name string
Feature uint32
Mask uint32
raw RawSockaddrALG
}
func ( sa * SockaddrALG ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
// Leave room for NUL byte terminator.
if len ( sa . Type ) > 13 {
return nil , 0 , EINVAL
}
if len ( sa . Name ) > 63 {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_ALG
sa . raw . Feat = sa . Feature
sa . raw . Mask = sa . Mask
typ , err := ByteSliceFromString ( sa . Type )
if err != nil {
return nil , 0 , err
}
name , err := ByteSliceFromString ( sa . Name )
if err != nil {
return nil , 0 , err
}
copy ( sa . raw . Type [ : ] , typ )
copy ( sa . raw . Name [ : ] , name )
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrALG , nil
}
// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
// bidirectional communication between a hypervisor and its guest virtual
// machines.
type SockaddrVM struct {
// CID and Port specify a context ID and port address for a VM socket.
// Guests have a unique CID, and hosts may have a well-known CID of:
// - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
// - VMADDR_CID_LOCAL: refers to local communication (loopback).
// - VMADDR_CID_HOST: refers to other processes on the host.
CID uint32
Port uint32
Flags uint8
raw RawSockaddrVM
}
func ( sa * SockaddrVM ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_VSOCK
sa . raw . Port = sa . Port
sa . raw . Cid = sa . CID
sa . raw . Flags = sa . Flags
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrVM , nil
}
type SockaddrXDP struct {
Flags uint16
Ifindex uint32
QueueID uint32
SharedUmemFD uint32
raw RawSockaddrXDP
}
func ( sa * SockaddrXDP ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_XDP
sa . raw . Flags = sa . Flags
sa . raw . Ifindex = sa . Ifindex
sa . raw . Queue_id = sa . QueueID
sa . raw . Shared_umem_fd = sa . SharedUmemFD
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrXDP , nil
}
// This constant mirrors the #define of PX_PROTO_OE in
// linux/if_pppox.h. We're defining this by hand here instead of
// autogenerating through mkerrors.sh because including
// linux/if_pppox.h causes some declaration conflicts with other
// includes (linux/if_pppox.h includes linux/in.h, which conflicts
// with netinet/in.h). Given that we only need a single zero constant
// out of that file, it's cleaner to just define it by hand here.
const px_proto_oe = 0
type SockaddrPPPoE struct {
SID uint16
Remote [ ] byte
Dev string
raw RawSockaddrPPPoX
}
func ( sa * SockaddrPPPoE ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if len ( sa . Remote ) != 6 {
return nil , 0 , EINVAL
}
if len ( sa . Dev ) > IFNAMSIZ - 1 {
return nil , 0 , EINVAL
}
* ( * uint16 ) ( unsafe . Pointer ( & sa . raw [ 0 ] ) ) = AF_PPPOX
// This next field is in host-endian byte order. We can't use the
// same unsafe pointer cast as above, because this value is not
// 32-bit aligned and some architectures don't allow unaligned
// access.
//
// However, the value of px_proto_oe is 0, so we can use
// encoding/binary helpers to write the bytes without worrying
// about the ordering.
binary . BigEndian . PutUint32 ( sa . raw [ 2 : 6 ] , px_proto_oe )
// This field is deliberately big-endian, unlike the previous
// one. The kernel expects SID to be in network byte order.
binary . BigEndian . PutUint16 ( sa . raw [ 6 : 8 ] , sa . SID )
copy ( sa . raw [ 8 : 14 ] , sa . Remote )
for i := 14 ; i < 14 + IFNAMSIZ ; i ++ {
sa . raw [ i ] = 0
}
copy ( sa . raw [ 14 : ] , sa . Dev )
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrPPPoX , nil
}
// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
// For more information on TIPC, see: http://tipc.sourceforge.net/.
type SockaddrTIPC struct {
// Scope is the publication scopes when binding service/service range.
// Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
Scope int
// Addr is the type of address used to manipulate a socket. Addr must be
// one of:
// - *TIPCSocketAddr: "id" variant in the C addr union
// - *TIPCServiceRange: "nameseq" variant in the C addr union
// - *TIPCServiceName: "name" variant in the C addr union
//
// If nil, EINVAL will be returned when the structure is used.
Addr TIPCAddr
raw RawSockaddrTIPC
}
// TIPCAddr is implemented by types that can be used as an address for
// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
// and *TIPCServiceName.
type TIPCAddr interface {
tipcAddrtype ( ) uint8
tipcAddr ( ) [ 12 ] byte
}
func ( sa * TIPCSocketAddr ) tipcAddr ( ) [ 12 ] byte {
var out [ 12 ] byte
copy ( out [ : ] , ( * ( * [ unsafe . Sizeof ( TIPCSocketAddr { } ) ] byte ) ( unsafe . Pointer ( sa ) ) ) [ : ] )
return out
}
func ( sa * TIPCSocketAddr ) tipcAddrtype ( ) uint8 { return TIPC_SOCKET_ADDR }
func ( sa * TIPCServiceRange ) tipcAddr ( ) [ 12 ] byte {
var out [ 12 ] byte
copy ( out [ : ] , ( * ( * [ unsafe . Sizeof ( TIPCServiceRange { } ) ] byte ) ( unsafe . Pointer ( sa ) ) ) [ : ] )
return out
}
func ( sa * TIPCServiceRange ) tipcAddrtype ( ) uint8 { return TIPC_SERVICE_RANGE }
func ( sa * TIPCServiceName ) tipcAddr ( ) [ 12 ] byte {
var out [ 12 ] byte
copy ( out [ : ] , ( * ( * [ unsafe . Sizeof ( TIPCServiceName { } ) ] byte ) ( unsafe . Pointer ( sa ) ) ) [ : ] )
return out
}
func ( sa * TIPCServiceName ) tipcAddrtype ( ) uint8 { return TIPC_SERVICE_ADDR }
func ( sa * SockaddrTIPC ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Addr == nil {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_TIPC
sa . raw . Scope = int8 ( sa . Scope )
sa . raw . Addrtype = sa . Addr . tipcAddrtype ( )
sa . raw . Addr = sa . Addr . tipcAddr ( )
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrTIPC , nil
}
// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
type SockaddrL2TPIP struct {
Addr [ 4 ] byte
ConnId uint32
raw RawSockaddrL2TPIP
}
func ( sa * SockaddrL2TPIP ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_INET
sa . raw . Conn_id = sa . ConnId
sa . raw . Addr = sa . Addr
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrL2TPIP , nil
}
// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
type SockaddrL2TPIP6 struct {
Addr [ 16 ] byte
ZoneId uint32
ConnId uint32
raw RawSockaddrL2TPIP6
}
func ( sa * SockaddrL2TPIP6 ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_INET6
sa . raw . Conn_id = sa . ConnId
sa . raw . Scope_id = sa . ZoneId
sa . raw . Addr = sa . Addr
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrL2TPIP6 , nil
}
// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
type SockaddrIUCV struct {
UserID string
Name string
raw RawSockaddrIUCV
}
func ( sa * SockaddrIUCV ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_IUCV
// These are EBCDIC encoded by the kernel, but we still need to pad them
// with blanks. Initializing with blanks allows the caller to feed in either
// a padded or an unpadded string.
for i := 0 ; i < 8 ; i ++ {
sa . raw . Nodeid [ i ] = ' '
sa . raw . User_id [ i ] = ' '
sa . raw . Name [ i ] = ' '
}
if len ( sa . UserID ) > 8 || len ( sa . Name ) > 8 {
return nil , 0 , EINVAL
}
for i , b := range [ ] byte ( sa . UserID [ : ] ) {
sa . raw . User_id [ i ] = int8 ( b )
}
for i , b := range [ ] byte ( sa . Name [ : ] ) {
sa . raw . Name [ i ] = int8 ( b )
}
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrIUCV , nil
}
type SockaddrNFC struct {
DeviceIdx uint32
TargetIdx uint32
NFCProtocol uint32
raw RawSockaddrNFC
}
func ( sa * SockaddrNFC ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Sa_family = AF_NFC
sa . raw . Dev_idx = sa . DeviceIdx
sa . raw . Target_idx = sa . TargetIdx
sa . raw . Nfc_protocol = sa . NFCProtocol
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrNFC , nil
}
type SockaddrNFCLLCP struct {
DeviceIdx uint32
TargetIdx uint32
NFCProtocol uint32
DestinationSAP uint8
SourceSAP uint8
ServiceName string
raw RawSockaddrNFCLLCP
}
func ( sa * SockaddrNFCLLCP ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Sa_family = AF_NFC
sa . raw . Dev_idx = sa . DeviceIdx
sa . raw . Target_idx = sa . TargetIdx
sa . raw . Nfc_protocol = sa . NFCProtocol
sa . raw . Dsap = sa . DestinationSAP
sa . raw . Ssap = sa . SourceSAP
if len ( sa . ServiceName ) > len ( sa . raw . Service_name ) {
return nil , 0 , EINVAL
}
copy ( sa . raw . Service_name [ : ] , sa . ServiceName )
sa . raw . SetServiceNameLen ( len ( sa . ServiceName ) )
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrNFCLLCP , nil
}
var socketProtocol = func ( fd int ) ( int , error ) {
return GetsockoptInt ( fd , SOL_SOCKET , SO_PROTOCOL )
}
func anyToSockaddr ( fd int , rsa * RawSockaddrAny ) ( Sockaddr , error ) {
switch rsa . Addr . Family {
case AF_NETLINK :
pp := ( * RawSockaddrNetlink ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrNetlink )
sa . Family = pp . Family
sa . Pad = pp . Pad
sa . Pid = pp . Pid
sa . Groups = pp . Groups
return sa , nil
case AF_PACKET :
pp := ( * RawSockaddrLinklayer ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrLinklayer )
sa . Protocol = pp . Protocol
sa . Ifindex = int ( pp . Ifindex )
sa . Hatype = pp . Hatype
sa . Pkttype = pp . Pkttype
sa . Halen = pp . Halen
sa . Addr = pp . Addr
return sa , nil
case AF_UNIX :
pp := ( * RawSockaddrUnix ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrUnix )
if pp . Path [ 0 ] == 0 {
// "Abstract" Unix domain socket.
// Rewrite leading NUL as @ for textual display.
// (This is the standard convention.)
// Not friendly to overwrite in place,
// but the callers below don't care.
pp . Path [ 0 ] = '@'
}
// Assume path ends at NUL.
// This is not technically the Linux semantics for
// abstract Unix domain sockets--they are supposed
// to be uninterpreted fixed-size binary blobs--but
// everyone uses this convention.
n := 0
for n < len ( pp . Path ) && pp . Path [ n ] != 0 {
n ++
}
bytes := ( * [ len ( pp . Path ) ] byte ) ( unsafe . Pointer ( & pp . Path [ 0 ] ) ) [ 0 : n ]
sa . Name = string ( bytes )
return sa , nil
case AF_INET :
proto , err := socketProtocol ( fd )
if err != nil {
return nil , err
}
switch proto {
case IPPROTO_L2TP :
pp := ( * RawSockaddrL2TPIP ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrL2TPIP )
sa . ConnId = pp . Conn_id
sa . Addr = pp . Addr
return sa , nil
default :
pp := ( * RawSockaddrInet4 ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrInet4 )
p := ( * [ 2 ] byte ) ( unsafe . Pointer ( & pp . Port ) )
sa . Port = int ( p [ 0 ] ) << 8 + int ( p [ 1 ] )
sa . Addr = pp . Addr
return sa , nil
}
case AF_INET6 :
proto , err := socketProtocol ( fd )
if err != nil {
return nil , err
}
switch proto {
case IPPROTO_L2TP :
pp := ( * RawSockaddrL2TPIP6 ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrL2TPIP6 )
sa . ConnId = pp . Conn_id
sa . ZoneId = pp . Scope_id
sa . Addr = pp . Addr
return sa , nil
default :
pp := ( * RawSockaddrInet6 ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrInet6 )
p := ( * [ 2 ] byte ) ( unsafe . Pointer ( & pp . Port ) )
sa . Port = int ( p [ 0 ] ) << 8 + int ( p [ 1 ] )
sa . ZoneId = pp . Scope_id
sa . Addr = pp . Addr
return sa , nil
}
case AF_VSOCK :
pp := ( * RawSockaddrVM ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrVM {
CID : pp . Cid ,
Port : pp . Port ,
Flags : pp . Flags ,
}
return sa , nil
case AF_BLUETOOTH :
proto , err := socketProtocol ( fd )
if err != nil {
return nil , err
}
// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
switch proto {
case BTPROTO_L2CAP :
pp := ( * RawSockaddrL2 ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrL2 {
PSM : pp . Psm ,
CID : pp . Cid ,
Addr : pp . Bdaddr ,
AddrType : pp . Bdaddr_type ,
}
return sa , nil
case BTPROTO_RFCOMM :
pp := ( * RawSockaddrRFCOMM ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrRFCOMM {
Channel : pp . Channel ,
Addr : pp . Bdaddr ,
}
return sa , nil
}
case AF_XDP :
pp := ( * RawSockaddrXDP ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrXDP {
Flags : pp . Flags ,
Ifindex : pp . Ifindex ,
QueueID : pp . Queue_id ,
SharedUmemFD : pp . Shared_umem_fd ,
}
return sa , nil
case AF_PPPOX :
pp := ( * RawSockaddrPPPoX ) ( unsafe . Pointer ( rsa ) )
if binary . BigEndian . Uint32 ( pp [ 2 : 6 ] ) != px_proto_oe {
return nil , EINVAL
}
sa := & SockaddrPPPoE {
SID : binary . BigEndian . Uint16 ( pp [ 6 : 8 ] ) ,
Remote : pp [ 8 : 14 ] ,
}
for i := 14 ; i < 14 + IFNAMSIZ ; i ++ {
if pp [ i ] == 0 {
sa . Dev = string ( pp [ 14 : i ] )
break
}
}
return sa , nil
case AF_TIPC :
pp := ( * RawSockaddrTIPC ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrTIPC {
Scope : int ( pp . Scope ) ,
}
// Determine which union variant is present in pp.Addr by checking
// pp.Addrtype.
switch pp . Addrtype {
case TIPC_SERVICE_RANGE :
sa . Addr = ( * TIPCServiceRange ) ( unsafe . Pointer ( & pp . Addr ) )
case TIPC_SERVICE_ADDR :
sa . Addr = ( * TIPCServiceName ) ( unsafe . Pointer ( & pp . Addr ) )
case TIPC_SOCKET_ADDR :
sa . Addr = ( * TIPCSocketAddr ) ( unsafe . Pointer ( & pp . Addr ) )
default :
return nil , EINVAL
}
return sa , nil
case AF_IUCV :
pp := ( * RawSockaddrIUCV ) ( unsafe . Pointer ( rsa ) )
var user [ 8 ] byte
var name [ 8 ] byte
for i := 0 ; i < 8 ; i ++ {
user [ i ] = byte ( pp . User_id [ i ] )
name [ i ] = byte ( pp . Name [ i ] )
}
sa := & SockaddrIUCV {
UserID : string ( user [ : ] ) ,
Name : string ( name [ : ] ) ,
}
return sa , nil
case AF_CAN :
proto , err := socketProtocol ( fd )
if err != nil {
return nil , err
}
pp := ( * RawSockaddrCAN ) ( unsafe . Pointer ( rsa ) )
switch proto {
case CAN_J1939 :
sa := & SockaddrCANJ1939 {
Ifindex : int ( pp . Ifindex ) ,
}
name := ( * [ 8 ] byte ) ( unsafe . Pointer ( & sa . Name ) )
for i := 0 ; i < 8 ; i ++ {
name [ i ] = pp . Addr [ i ]
}
pgn := ( * [ 4 ] byte ) ( unsafe . Pointer ( & sa . PGN ) )
for i := 0 ; i < 4 ; i ++ {
pgn [ i ] = pp . Addr [ i + 8 ]
}
addr := ( * [ 1 ] byte ) ( unsafe . Pointer ( & sa . Addr ) )
addr [ 0 ] = pp . Addr [ 12 ]
return sa , nil
default :
sa := & SockaddrCAN {
Ifindex : int ( pp . Ifindex ) ,
}
rx := ( * [ 4 ] byte ) ( unsafe . Pointer ( & sa . RxID ) )
for i := 0 ; i < 4 ; i ++ {
rx [ i ] = pp . Addr [ i ]
}
tx := ( * [ 4 ] byte ) ( unsafe . Pointer ( & sa . TxID ) )
for i := 0 ; i < 4 ; i ++ {
tx [ i ] = pp . Addr [ i + 4 ]
}
return sa , nil
}
case AF_NFC :
proto , err := socketProtocol ( fd )
if err != nil {
return nil , err
}
switch proto {
case NFC_SOCKPROTO_RAW :
pp := ( * RawSockaddrNFC ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrNFC {
DeviceIdx : pp . Dev_idx ,
TargetIdx : pp . Target_idx ,
NFCProtocol : pp . Nfc_protocol ,
}
return sa , nil
case NFC_SOCKPROTO_LLCP :
pp := ( * RawSockaddrNFCLLCP ) ( unsafe . Pointer ( rsa ) )
if uint64 ( pp . Service_name_len ) > uint64 ( len ( pp . Service_name ) ) {
return nil , EINVAL
}
sa := & SockaddrNFCLLCP {
DeviceIdx : pp . Dev_idx ,
TargetIdx : pp . Target_idx ,
NFCProtocol : pp . Nfc_protocol ,
DestinationSAP : pp . Dsap ,
SourceSAP : pp . Ssap ,
ServiceName : string ( pp . Service_name [ : pp . Service_name_len ] ) ,
}
return sa , nil
default :
return nil , EINVAL
}
}
return nil , EAFNOSUPPORT
}
func Accept ( fd int ) ( nfd int , sa Sockaddr , err error ) {
var rsa RawSockaddrAny
var len _Socklen = SizeofSockaddrAny
nfd , err = accept4 ( fd , & rsa , & len , 0 )
if err != nil {
return
}
sa , err = anyToSockaddr ( fd , & rsa )
if err != nil {
Close ( nfd )
nfd = 0
}
return
}
func Accept4 ( fd int , flags int ) ( nfd int , sa Sockaddr , err error ) {
var rsa RawSockaddrAny
var len _Socklen = SizeofSockaddrAny
nfd , err = accept4 ( fd , & rsa , & len , flags )
if err != nil {
return
}
if len > SizeofSockaddrAny {
panic ( "RawSockaddrAny too small" )
}
sa , err = anyToSockaddr ( fd , & rsa )
if err != nil {
Close ( nfd )
nfd = 0
}
return
}
func Getsockname ( fd int ) ( sa Sockaddr , err error ) {
var rsa RawSockaddrAny
var len _Socklen = SizeofSockaddrAny
if err = getsockname ( fd , & rsa , & len ) ; err != nil {
return
}
return anyToSockaddr ( fd , & rsa )
}
func GetsockoptIPMreqn ( fd , level , opt int ) ( * IPMreqn , error ) {
var value IPMreqn
vallen := _Socklen ( SizeofIPMreqn )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & value ) , & vallen )
return & value , err
}
func GetsockoptUcred ( fd , level , opt int ) ( * Ucred , error ) {
var value Ucred
vallen := _Socklen ( SizeofUcred )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & value ) , & vallen )
return & value , err
}
func GetsockoptTCPInfo ( fd , level , opt int ) ( * TCPInfo , error ) {
var value TCPInfo
vallen := _Socklen ( SizeofTCPInfo )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & value ) , & vallen )
return & value , err
}
// GetsockoptString returns the string value of the socket option opt for the
// socket associated with fd at the given socket level.
func GetsockoptString ( fd , level , opt int ) ( string , error ) {
buf := make ( [ ] byte , 256 )
vallen := _Socklen ( len ( buf ) )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & buf [ 0 ] ) , & vallen )
if err != nil {
if err == ERANGE {
buf = make ( [ ] byte , vallen )
err = getsockopt ( fd , level , opt , unsafe . Pointer ( & buf [ 0 ] ) , & vallen )
}
if err != nil {
return "" , err
}
}
return string ( buf [ : vallen - 1 ] ) , nil
}
func GetsockoptTpacketStats ( fd , level , opt int ) ( * TpacketStats , error ) {
var value TpacketStats
vallen := _Socklen ( SizeofTpacketStats )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & value ) , & vallen )
return & value , err
}
func GetsockoptTpacketStatsV3 ( fd , level , opt int ) ( * TpacketStatsV3 , error ) {
var value TpacketStatsV3
vallen := _Socklen ( SizeofTpacketStatsV3 )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & value ) , & vallen )
return & value , err
}
func SetsockoptIPMreqn ( fd , level , opt int , mreq * IPMreqn ) ( err error ) {
return setsockopt ( fd , level , opt , unsafe . Pointer ( mreq ) , unsafe . Sizeof ( * mreq ) )
}
func SetsockoptPacketMreq ( fd , level , opt int , mreq * PacketMreq ) error {
return setsockopt ( fd , level , opt , unsafe . Pointer ( mreq ) , unsafe . Sizeof ( * mreq ) )
}
// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
// socket to filter incoming packets. See 'man 7 socket' for usage information.
func SetsockoptSockFprog ( fd , level , opt int , fprog * SockFprog ) error {
return setsockopt ( fd , level , opt , unsafe . Pointer ( fprog ) , unsafe . Sizeof ( * fprog ) )
}
func SetsockoptCanRawFilter ( fd , level , opt int , filter [ ] CanFilter ) error {
var p unsafe . Pointer
if len ( filter ) > 0 {
p = unsafe . Pointer ( & filter [ 0 ] )
}
return setsockopt ( fd , level , opt , p , uintptr ( len ( filter ) * SizeofCanFilter ) )
}
func SetsockoptTpacketReq ( fd , level , opt int , tp * TpacketReq ) error {
return setsockopt ( fd , level , opt , unsafe . Pointer ( tp ) , unsafe . Sizeof ( * tp ) )
}
func SetsockoptTpacketReq3 ( fd , level , opt int , tp * TpacketReq3 ) error {
return setsockopt ( fd , level , opt , unsafe . Pointer ( tp ) , unsafe . Sizeof ( * tp ) )
}
func SetsockoptTCPRepairOpt ( fd , level , opt int , o [ ] TCPRepairOpt ) ( err error ) {
if len ( o ) == 0 {
return EINVAL
}
return setsockopt ( fd , level , opt , unsafe . Pointer ( & o [ 0 ] ) , uintptr ( SizeofTCPRepairOpt * len ( o ) ) )
}
// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
// KeyctlInt calls keyctl commands in which each argument is an int.
// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
// KeyctlBuffer calls keyctl commands in which the third and fourth
// arguments are a buffer and its length, respectively.
// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
// KeyctlString calls keyctl commands which return a string.
// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
func KeyctlString ( cmd int , id int ) ( string , error ) {
// We must loop as the string data may change in between the syscalls.
// We could allocate a large buffer here to reduce the chance that the
// syscall needs to be called twice; however, this is unnecessary as
// the performance loss is negligible.
var buffer [ ] byte
for {
// Try to fill the buffer with data
length , err := KeyctlBuffer ( cmd , id , buffer , 0 )
if err != nil {
return "" , err
}
// Check if the data was written
if length <= len ( buffer ) {
// Exclude the null terminator
return string ( buffer [ : length - 1 ] ) , nil
}
// Make a bigger buffer if needed
buffer = make ( [ ] byte , length )
}
}
// Keyctl commands with special signatures.
// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
func KeyctlGetKeyringID ( id int , create bool ) ( ringid int , err error ) {
createInt := 0
if create {
createInt = 1
}
return KeyctlInt ( KEYCTL_GET_KEYRING_ID , id , createInt , 0 , 0 )
}
// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
// key handle permission mask as described in the "keyctl setperm" section of
// http://man7.org/linux/man-pages/man1/keyctl.1.html.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
func KeyctlSetperm ( id int , perm uint32 ) error {
_ , err := KeyctlInt ( KEYCTL_SETPERM , id , int ( perm ) , 0 , 0 )
return err
}
//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
func KeyctlJoinSessionKeyring ( name string ) ( ringid int , err error ) {
return keyctlJoin ( KEYCTL_JOIN_SESSION_KEYRING , name )
}
//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
// KeyctlSearch implements the KEYCTL_SEARCH command.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
func KeyctlSearch ( ringid int , keyType , description string , destRingid int ) ( id int , err error ) {
return keyctlSearch ( KEYCTL_SEARCH , ringid , keyType , description , destRingid )
}
//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
// of Iovec (each of which represents a buffer) instead of a single buffer.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
func KeyctlInstantiateIOV ( id int , payload [ ] Iovec , ringid int ) error {
return keyctlIOV ( KEYCTL_INSTANTIATE_IOV , id , payload , ringid )
}
//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
// computes a Diffie-Hellman shared secret based on the provide params. The
// secret is written to the provided buffer and the returned size is the number
// of bytes written (returning an error if there is insufficient space in the
// buffer). If a nil buffer is passed in, this function returns the minimum
// buffer length needed to store the appropriate data. Note that this differs
// from KEYCTL_READ's behavior which always returns the requested payload size.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
func KeyctlDHCompute ( params * KeyctlDHParams , buffer [ ] byte ) ( size int , err error ) {
return keyctlDH ( KEYCTL_DH_COMPUTE , params , buffer )
}
// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
// command limits the set of keys that can be linked to the keyring, regardless
// of keyring permissions. The command requires the "setattr" permission.
//
// When called with an empty keyType the command locks the keyring, preventing
// any further keys from being linked to the keyring.
//
// The "asymmetric" keyType defines restrictions requiring key payloads to be
// DER encoded X.509 certificates signed by keys in another keyring. Restrictions
// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
//
// As of Linux 4.12, only the "asymmetric" keyType defines type-specific
// restrictions.
//
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
// http://man7.org/linux/man-pages/man2/keyctl.2.html
func KeyctlRestrictKeyring ( ringid int , keyType string , restriction string ) error {
if keyType == "" {
return keyctlRestrictKeyring ( KEYCTL_RESTRICT_KEYRING , ringid )
}
return keyctlRestrictKeyringByType ( KEYCTL_RESTRICT_KEYRING , ringid , keyType , restriction )
}
//sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
//sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
func recvmsgRaw ( fd int , iov [ ] Iovec , oob [ ] byte , flags int , rsa * RawSockaddrAny ) ( n , oobn int , recvflags int , err error ) {
var msg Msghdr
msg . Name = ( * byte ) ( unsafe . Pointer ( rsa ) )
msg . Namelen = uint32 ( SizeofSockaddrAny )
var dummy byte
if len ( oob ) > 0 {
if emptyIovecs ( iov ) {
var sockType int
sockType , err = GetsockoptInt ( fd , SOL_SOCKET , SO_TYPE )
if err != nil {
return
}
// receive at least one normal byte
if sockType != SOCK_DGRAM {
var iova [ 1 ] Iovec
iova [ 0 ] . Base = & dummy
iova [ 0 ] . SetLen ( 1 )
iov = iova [ : ]
}
}
msg . Control = & oob [ 0 ]
msg . SetControllen ( len ( oob ) )
}
if len ( iov ) > 0 {
msg . Iov = & iov [ 0 ]
msg . SetIovlen ( len ( iov ) )
}
if n , err = recvmsg ( fd , & msg , flags ) ; err != nil {
return
}
oobn = int ( msg . Controllen )
recvflags = int ( msg . Flags )
return
}
func sendmsgN ( fd int , iov [ ] Iovec , oob [ ] byte , ptr unsafe . Pointer , salen _Socklen , flags int ) ( n int , err error ) {
var msg Msghdr
msg . Name = ( * byte ) ( ptr )
msg . Namelen = uint32 ( salen )
var dummy byte
var empty bool
if len ( oob ) > 0 {
empty = emptyIovecs ( iov )
if empty {
var sockType int
sockType , err = GetsockoptInt ( fd , SOL_SOCKET , SO_TYPE )
if err != nil {
return 0 , err
}
// send at least one normal byte
if sockType != SOCK_DGRAM {
var iova [ 1 ] Iovec
iova [ 0 ] . Base = & dummy
iova [ 0 ] . SetLen ( 1 )
iov = iova [ : ]
}
}
msg . Control = & oob [ 0 ]
msg . SetControllen ( len ( oob ) )
}
if len ( iov ) > 0 {
msg . Iov = & iov [ 0 ]
msg . SetIovlen ( len ( iov ) )
}
if n , err = sendmsg ( fd , & msg , flags ) ; err != nil {
return 0 , err
}
if len ( oob ) > 0 && empty {
n = 0
}
return n , nil
}
// BindToDevice binds the socket associated with fd to device.
func BindToDevice ( fd int , device string ) ( err error ) {
return SetsockoptString ( fd , SOL_SOCKET , SO_BINDTODEVICE , device )
}
//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
func ptracePeek ( req int , pid int , addr uintptr , out [ ] byte ) ( count int , err error ) {
// The peek requests are machine-size oriented, so we wrap it
// to retrieve arbitrary-length data.
// The ptrace syscall differs from glibc's ptrace.
// Peeks returns the word in *data, not as the return value.
var buf [ SizeofPtr ] byte
// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
// access (PEEKUSER warns that it might), but if we don't
// align our reads, we might straddle an unmapped page
// boundary and not get the bytes leading up to the page
// boundary.
n := 0
if addr % SizeofPtr != 0 {
err = ptrace ( req , pid , addr - addr % SizeofPtr , uintptr ( unsafe . Pointer ( & buf [ 0 ] ) ) )
if err != nil {
return 0 , err
}
n += copy ( out , buf [ addr % SizeofPtr : ] )
out = out [ n : ]
}
// Remainder.
for len ( out ) > 0 {
// We use an internal buffer to guarantee alignment.
// It's not documented if this is necessary, but we're paranoid.
err = ptrace ( req , pid , addr + uintptr ( n ) , uintptr ( unsafe . Pointer ( & buf [ 0 ] ) ) )
if err != nil {
return n , err
}
copied := copy ( out , buf [ 0 : ] )
n += copied
out = out [ copied : ]
}
return n , nil
}
func PtracePeekText ( pid int , addr uintptr , out [ ] byte ) ( count int , err error ) {
return ptracePeek ( PTRACE_PEEKTEXT , pid , addr , out )
}
func PtracePeekData ( pid int , addr uintptr , out [ ] byte ) ( count int , err error ) {
return ptracePeek ( PTRACE_PEEKDATA , pid , addr , out )
}
func PtracePeekUser ( pid int , addr uintptr , out [ ] byte ) ( count int , err error ) {
return ptracePeek ( PTRACE_PEEKUSR , pid , addr , out )
}
func ptracePoke ( pokeReq int , peekReq int , pid int , addr uintptr , data [ ] byte ) ( count int , err error ) {
// As for ptracePeek, we need to align our accesses to deal
// with the possibility of straddling an invalid page.
// Leading edge.
n := 0
if addr % SizeofPtr != 0 {
var buf [ SizeofPtr ] byte
err = ptrace ( peekReq , pid , addr - addr % SizeofPtr , uintptr ( unsafe . Pointer ( & buf [ 0 ] ) ) )
if err != nil {
return 0 , err
}
n += copy ( buf [ addr % SizeofPtr : ] , data )
word := * ( ( * uintptr ) ( unsafe . Pointer ( & buf [ 0 ] ) ) )
err = ptrace ( pokeReq , pid , addr - addr % SizeofPtr , word )
if err != nil {
return 0 , err
}
data = data [ n : ]
}
// Interior.
for len ( data ) > SizeofPtr {
word := * ( ( * uintptr ) ( unsafe . Pointer ( & data [ 0 ] ) ) )
err = ptrace ( pokeReq , pid , addr + uintptr ( n ) , word )
if err != nil {
return n , err
}
n += SizeofPtr
data = data [ SizeofPtr : ]
}
// Trailing edge.
if len ( data ) > 0 {
var buf [ SizeofPtr ] byte
err = ptrace ( peekReq , pid , addr + uintptr ( n ) , uintptr ( unsafe . Pointer ( & buf [ 0 ] ) ) )
if err != nil {
return n , err
}
copy ( buf [ 0 : ] , data )
word := * ( ( * uintptr ) ( unsafe . Pointer ( & buf [ 0 ] ) ) )
err = ptrace ( pokeReq , pid , addr + uintptr ( n ) , word )
if err != nil {
return n , err
}
n += len ( data )
}
return n , nil
}
func PtracePokeText ( pid int , addr uintptr , data [ ] byte ) ( count int , err error ) {
return ptracePoke ( PTRACE_POKETEXT , PTRACE_PEEKTEXT , pid , addr , data )
}
func PtracePokeData ( pid int , addr uintptr , data [ ] byte ) ( count int , err error ) {
return ptracePoke ( PTRACE_POKEDATA , PTRACE_PEEKDATA , pid , addr , data )
}
func PtracePokeUser ( pid int , addr uintptr , data [ ] byte ) ( count int , err error ) {
return ptracePoke ( PTRACE_POKEUSR , PTRACE_PEEKUSR , pid , addr , data )
}
func PtraceGetRegs ( pid int , regsout * PtraceRegs ) ( err error ) {
return ptrace ( PTRACE_GETREGS , pid , 0 , uintptr ( unsafe . Pointer ( regsout ) ) )
}
func PtraceSetRegs ( pid int , regs * PtraceRegs ) ( err error ) {
return ptrace ( PTRACE_SETREGS , pid , 0 , uintptr ( unsafe . Pointer ( regs ) ) )
}
func PtraceSetOptions ( pid int , options int ) ( err error ) {
return ptrace ( PTRACE_SETOPTIONS , pid , 0 , uintptr ( options ) )
}
func PtraceGetEventMsg ( pid int ) ( msg uint , err error ) {
var data _C_long
err = ptrace ( PTRACE_GETEVENTMSG , pid , 0 , uintptr ( unsafe . Pointer ( & data ) ) )
msg = uint ( data )
return
}
func PtraceCont ( pid int , signal int ) ( err error ) {
return ptrace ( PTRACE_CONT , pid , 0 , uintptr ( signal ) )
}
func PtraceSyscall ( pid int , signal int ) ( err error ) {
return ptrace ( PTRACE_SYSCALL , pid , 0 , uintptr ( signal ) )
}
func PtraceSingleStep ( pid int ) ( err error ) { return ptrace ( PTRACE_SINGLESTEP , pid , 0 , 0 ) }
func PtraceInterrupt ( pid int ) ( err error ) { return ptrace ( PTRACE_INTERRUPT , pid , 0 , 0 ) }
func PtraceAttach ( pid int ) ( err error ) { return ptrace ( PTRACE_ATTACH , pid , 0 , 0 ) }
func PtraceSeize ( pid int ) ( err error ) { return ptrace ( PTRACE_SEIZE , pid , 0 , 0 ) }
func PtraceDetach ( pid int ) ( err error ) { return ptrace ( PTRACE_DETACH , pid , 0 , 0 ) }
//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
func Reboot ( cmd int ) ( err error ) {
return reboot ( LINUX_REBOOT_MAGIC1 , LINUX_REBOOT_MAGIC2 , cmd , "" )
}
func direntIno ( buf [ ] byte ) ( uint64 , bool ) {
return readInt ( buf , unsafe . Offsetof ( Dirent { } . Ino ) , unsafe . Sizeof ( Dirent { } . Ino ) )
}
func direntReclen ( buf [ ] byte ) ( uint64 , bool ) {
return readInt ( buf , unsafe . Offsetof ( Dirent { } . Reclen ) , unsafe . Sizeof ( Dirent { } . Reclen ) )
}
func direntNamlen ( buf [ ] byte ) ( uint64 , bool ) {
reclen , ok := direntReclen ( buf )
if ! ok {
return 0 , false
}
return reclen - uint64 ( unsafe . Offsetof ( Dirent { } . Name ) ) , true
}
//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
func Mount ( source string , target string , fstype string , flags uintptr , data string ) ( err error ) {
// Certain file systems get rather angry and EINVAL if you give
// them an empty string of data, rather than NULL.
if data == "" {
return mount ( source , target , fstype , flags , nil )
}
datap , err := BytePtrFromString ( data )
if err != nil {
return err
}
return mount ( source , target , fstype , flags , datap )
}
//sys mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR
// MountSetattr is a wrapper for mount_setattr(2).
// https://man7.org/linux/man-pages/man2/mount_setattr.2.html
//
// Requires kernel >= 5.12.
func MountSetattr ( dirfd int , pathname string , flags uint , attr * MountAttr ) error {
return mountSetattr ( dirfd , pathname , flags , attr , unsafe . Sizeof ( * attr ) )
}
func Sendfile ( outfd int , infd int , offset * int64 , count int ) ( written int , err error ) {
if raceenabled {
raceReleaseMerge ( unsafe . Pointer ( & ioSync ) )
}
return sendfile ( outfd , infd , offset , count )
}
// Sendto
// Recvfrom
// Socketpair
/ *
* Direct access
* /
//sys Acct(path string) (err error)
//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
//sys Adjtimex(buf *Timex) (state int, err error)
//sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error)
//sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error)
//sys Chdir(path string) (err error)
//sys Chroot(path string) (err error)
//sys ClockGetres(clockid int32, res *Timespec) (err error)
//sys ClockGettime(clockid int32, time *Timespec) (err error)
//sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
//sys Close(fd int) (err error)
//sys CloseRange(first uint, last uint, flags uint) (err error)
//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
//sys DeleteModule(name string, flags int) (err error)
//sys Dup(oldfd int) (fd int, err error)
func Dup2 ( oldfd , newfd int ) error {
return Dup3 ( oldfd , newfd , 0 )
}
//sys Dup3(oldfd int, newfd int, flags int) (err error)
//sysnb EpollCreate1(flag int) (fd int, err error)
//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
//sys Exit(code int) = SYS_EXIT_GROUP
//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
//sys Fchdir(fd int) (err error)
//sys Fchmod(fd int, mode uint32) (err error)
//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
//sys Fdatasync(fd int) (err error)
//sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
//sys FinitModule(fd int, params string, flags int) (err error)
//sys Flistxattr(fd int, dest []byte) (sz int, err error)
//sys Flock(fd int, how int) (err error)
//sys Fremovexattr(fd int, attr string) (err error)
//sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
//sys Fsync(fd int) (err error)
//sys Fsmount(fd int, flags int, mountAttrs int) (fsfd int, err error)
//sys Fsopen(fsName string, flags int) (fd int, err error)
//sys Fspick(dirfd int, pathName string, flags int) (fd int, err error)
//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
//sysnb Getpgid(pid int) (pgid int, err error)
func Getpgrp ( ) ( pid int ) {
pid , _ = Getpgid ( 0 )
return
}
//sysnb Getpid() (pid int)
//sysnb Getppid() (ppid int)
//sys Getpriority(which int, who int) (prio int, err error)
//sys Getrandom(buf []byte, flags int) (n int, err error)
//sysnb Getrusage(who int, rusage *Rusage) (err error)
//sysnb Getsid(pid int) (sid int, err error)
//sysnb Gettid() (tid int)
//sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
//sys InitModule(moduleImage []byte, params string) (err error)
//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
//sysnb InotifyInit1(flags int) (fd int, err error)
//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
//sysnb Kill(pid int, sig syscall.Signal) (err error)
//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
//sys Listxattr(path string, dest []byte) (sz int, err error)
//sys Llistxattr(path string, dest []byte) (sz int, err error)
//sys Lremovexattr(path string, attr string) (err error)
//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
//sys MemfdCreate(name string, flags int) (fd int, err error)
//sys Mkdirat(dirfd int, path string, mode uint32) (err error)
//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
//sys MoveMount(fromDirfd int, fromPathName string, toDirfd int, toPathName string, flags int) (err error)
//sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
//sys OpenTree(dfd int, fileName string, flags uint) (r int, err error)
//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
//sysnb Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
//sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
//sys read(fd int, p []byte) (n int, err error)
//sys Removexattr(path string, attr string) (err error)
//sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
//sys Setdomainname(p []byte) (err error)
//sys Sethostname(p []byte) (err error)
//sysnb Setpgid(pid int, pgid int) (err error)
//sysnb Setsid() (pid int, err error)
//sysnb Settimeofday(tv *Timeval) (err error)
//sys Setns(fd int, nstype int) (err error)
// PrctlRetInt performs a prctl operation specified by option and further
// optional arguments arg2 through arg5 depending on option. It returns a
// non-negative integer that is returned by the prctl syscall.
func PrctlRetInt ( option int , arg2 uintptr , arg3 uintptr , arg4 uintptr , arg5 uintptr ) ( int , error ) {
ret , _ , err := Syscall6 ( SYS_PRCTL , uintptr ( option ) , uintptr ( arg2 ) , uintptr ( arg3 ) , uintptr ( arg4 ) , uintptr ( arg5 ) , 0 )
if err != 0 {
return 0 , err
}
return int ( ret ) , nil
}
func Setuid ( uid int ) ( err error ) {
return syscall . Setuid ( uid )
}
func Setgid ( gid int ) ( err error ) {
return syscall . Setgid ( gid )
}
func Setreuid ( ruid , euid int ) ( err error ) {
return syscall . Setreuid ( ruid , euid )
}
func Setregid ( rgid , egid int ) ( err error ) {
return syscall . Setregid ( rgid , egid )
}
func Setresuid ( ruid , euid , suid int ) ( err error ) {
return syscall . Setresuid ( ruid , euid , suid )
}
func Setresgid ( rgid , egid , sgid int ) ( err error ) {
return syscall . Setresgid ( rgid , egid , sgid )
}
// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
// If the call fails due to other reasons, current fsgid will be returned.
func SetfsgidRetGid ( gid int ) ( int , error ) {
return setfsgid ( gid )
}
// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
// If the call fails due to other reasons, current fsuid will be returned.
func SetfsuidRetUid ( uid int ) ( int , error ) {
return setfsuid ( uid )
}
func Setfsgid ( gid int ) error {
_ , err := setfsgid ( gid )
return err
}
func Setfsuid ( uid int ) error {
_ , err := setfsuid ( uid )
return err
}
func Signalfd ( fd int , sigmask * Sigset_t , flags int ) ( newfd int , err error ) {
return signalfd ( fd , sigmask , _C__NSIG / 8 , flags )
}
//sys Setpriority(which int, who int, prio int) (err error)
//sys Setxattr(path string, attr string, data []byte, flags int) (err error)
//sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
//sys Sync()
//sys Syncfs(fd int) (err error)
//sysnb Sysinfo(info *Sysinfo_t) (err error)
//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
//sysnb TimerfdCreate(clockid int, flags int) (fd int, err error)
//sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
//sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
//sysnb Times(tms *Tms) (ticks uintptr, err error)
//sysnb Umask(mask int) (oldmask int)
//sysnb Uname(buf *Utsname) (err error)
//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
//sys Unshare(flags int) (err error)
//sys write(fd int, p []byte) (n int, err error)
//sys exitThread(code int) (err error) = SYS_EXIT
//sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
//sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
//sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
//sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
//sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
//sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
//sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
//sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
// minIovec is the size of the small initial allocation used by
// Readv, Writev, etc.
//
// This small allocation gets stack allocated, which lets the
// common use case of len(iovs) <= minIovs avoid more expensive
// heap allocations.
const minIovec = 8
// appendBytes converts bs to Iovecs and appends them to vecs.
func appendBytes ( vecs [ ] Iovec , bs [ ] [ ] byte ) [ ] Iovec {
for _ , b := range bs {
var v Iovec
v . SetLen ( len ( b ) )
if len ( b ) > 0 {
v . Base = & b [ 0 ]
} else {
v . Base = ( * byte ) ( unsafe . Pointer ( & _zero ) )
}
vecs = append ( vecs , v )
}
return vecs
}
// offs2lohi splits offs into its low and high order bits.
func offs2lohi ( offs int64 ) ( lo , hi uintptr ) {
const longBits = SizeofLong * 8
return uintptr ( offs ) , uintptr ( uint64 ( offs ) >> longBits )
}
func Readv ( fd int , iovs [ ] [ ] byte ) ( n int , err error ) {
iovecs := make ( [ ] Iovec , 0 , minIovec )
iovecs = appendBytes ( iovecs , iovs )
n , err = readv ( fd , iovecs )
readvRacedetect ( iovecs , n , err )
return n , err
}
func Preadv ( fd int , iovs [ ] [ ] byte , offset int64 ) ( n int , err error ) {
iovecs := make ( [ ] Iovec , 0 , minIovec )
iovecs = appendBytes ( iovecs , iovs )
lo , hi := offs2lohi ( offset )
n , err = preadv ( fd , iovecs , lo , hi )
readvRacedetect ( iovecs , n , err )
return n , err
}
func Preadv2 ( fd int , iovs [ ] [ ] byte , offset int64 , flags int ) ( n int , err error ) {
iovecs := make ( [ ] Iovec , 0 , minIovec )
iovecs = appendBytes ( iovecs , iovs )
lo , hi := offs2lohi ( offset )
n , err = preadv2 ( fd , iovecs , lo , hi , flags )
readvRacedetect ( iovecs , n , err )
return n , err
}
func readvRacedetect ( iovecs [ ] Iovec , n int , err error ) {
if ! raceenabled {
return
}
for i := 0 ; n > 0 && i < len ( iovecs ) ; i ++ {
m := int ( iovecs [ i ] . Len )
if m > n {
m = n
}
n -= m
if m > 0 {
raceWriteRange ( unsafe . Pointer ( iovecs [ i ] . Base ) , m )
}
}
if err == nil {
raceAcquire ( unsafe . Pointer ( & ioSync ) )
}
}
func Writev ( fd int , iovs [ ] [ ] byte ) ( n int , err error ) {
iovecs := make ( [ ] Iovec , 0 , minIovec )
iovecs = appendBytes ( iovecs , iovs )
if raceenabled {
raceReleaseMerge ( unsafe . Pointer ( & ioSync ) )
}
n , err = writev ( fd , iovecs )
writevRacedetect ( iovecs , n )
return n , err
}
func Pwritev ( fd int , iovs [ ] [ ] byte , offset int64 ) ( n int , err error ) {
iovecs := make ( [ ] Iovec , 0 , minIovec )
iovecs = appendBytes ( iovecs , iovs )
if raceenabled {
raceReleaseMerge ( unsafe . Pointer ( & ioSync ) )
}
lo , hi := offs2lohi ( offset )
n , err = pwritev ( fd , iovecs , lo , hi )
writevRacedetect ( iovecs , n )
return n , err
}
func Pwritev2 ( fd int , iovs [ ] [ ] byte , offset int64 , flags int ) ( n int , err error ) {
iovecs := make ( [ ] Iovec , 0 , minIovec )
iovecs = appendBytes ( iovecs , iovs )
if raceenabled {
raceReleaseMerge ( unsafe . Pointer ( & ioSync ) )
}
lo , hi := offs2lohi ( offset )
n , err = pwritev2 ( fd , iovecs , lo , hi , flags )
writevRacedetect ( iovecs , n )
return n , err
}
func writevRacedetect ( iovecs [ ] Iovec , n int ) {
if ! raceenabled {
return
}
for i := 0 ; n > 0 && i < len ( iovecs ) ; i ++ {
m := int ( iovecs [ i ] . Len )
if m > n {
m = n
}
n -= m
if m > 0 {
raceReadRange ( unsafe . Pointer ( iovecs [ i ] . Base ) , m )
}
}
}
// mmap varies by architecture; see syscall_linux_*.go.
//sys munmap(addr uintptr, length uintptr) (err error)
var mapper = & mmapper {
active : make ( map [ * byte ] [ ] byte ) ,
mmap : mmap ,
munmap : munmap ,
}
func Mmap ( fd int , offset int64 , length int , prot int , flags int ) ( data [ ] byte , err error ) {
return mapper . Mmap ( fd , offset , length , prot , flags )
}
func Munmap ( b [ ] byte ) ( err error ) {
return mapper . Munmap ( b )
}
//sys Madvise(b []byte, advice int) (err error)
//sys Mprotect(b []byte, prot int) (err error)
//sys Mlock(b []byte) (err error)
//sys Mlockall(flags int) (err error)
//sys Msync(b []byte, flags int) (err error)
//sys Munlock(b []byte) (err error)
//sys Munlockall() (err error)
// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
// using the specified flags.
func Vmsplice ( fd int , iovs [ ] Iovec , flags int ) ( int , error ) {
var p unsafe . Pointer
if len ( iovs ) > 0 {
p = unsafe . Pointer ( & iovs [ 0 ] )
}
n , _ , errno := Syscall6 ( SYS_VMSPLICE , uintptr ( fd ) , uintptr ( p ) , uintptr ( len ( iovs ) ) , uintptr ( flags ) , 0 , 0 )
if errno != 0 {
return 0 , syscall . Errno ( errno )
}
return int ( n ) , nil
}
func isGroupMember ( gid int ) bool {
groups , err := Getgroups ( )
if err != nil {
return false
}
for _ , g := range groups {
if g == gid {
return true
}
}
return false
}
//sys faccessat(dirfd int, path string, mode uint32) (err error)
//sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
func Faccessat ( dirfd int , path string , mode uint32 , flags int ) ( err error ) {
if flags == 0 {
return faccessat ( dirfd , path , mode )
}
if err := Faccessat2 ( dirfd , path , mode , flags ) ; err != ENOSYS && err != EPERM {
return err
}
// The Linux kernel faccessat system call does not take any flags.
// The glibc faccessat implements the flags itself; see
// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
// Because people naturally expect syscall.Faccessat to act
// like C faccessat, we do the same.
if flags & ^ ( AT_SYMLINK_NOFOLLOW | AT_EACCESS ) != 0 {
return EINVAL
}
var st Stat_t
if err := Fstatat ( dirfd , path , & st , flags & AT_SYMLINK_NOFOLLOW ) ; err != nil {
return err
}
mode &= 7
if mode == 0 {
return nil
}
var uid int
if flags & AT_EACCESS != 0 {
uid = Geteuid ( )
} else {
uid = Getuid ( )
}
if uid == 0 {
if mode & 1 == 0 {
// Root can read and write any file.
return nil
}
if st . Mode & 0111 != 0 {
// Root can execute any file that anybody can execute.
return nil
}
return EACCES
}
var fmode uint32
if uint32 ( uid ) == st . Uid {
fmode = ( st . Mode >> 6 ) & 7
} else {
var gid int
if flags & AT_EACCESS != 0 {
gid = Getegid ( )
} else {
gid = Getgid ( )
}
if uint32 ( gid ) == st . Gid || isGroupMember ( int ( st . Gid ) ) {
fmode = ( st . Mode >> 3 ) & 7
} else {
fmode = st . Mode & 7
}
}
if fmode & mode == mode {
return nil
}
return EACCES
}
//sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
//sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
// originally tried to generate it via unix/linux/types.go with "type
// fileHandle C.struct_file_handle" but that generated empty structs
// for mips64 and mips64le. Instead, hard code it for now (it's the
// same everywhere else) until the mips64 generator issue is fixed.
type fileHandle struct {
Bytes uint32
Type int32
}
// FileHandle represents the C struct file_handle used by
// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
// OpenByHandleAt).
type FileHandle struct {
* fileHandle
}
// NewFileHandle constructs a FileHandle.
func NewFileHandle ( handleType int32 , handle [ ] byte ) FileHandle {
const hdrSize = unsafe . Sizeof ( fileHandle { } )
buf := make ( [ ] byte , hdrSize + uintptr ( len ( handle ) ) )
copy ( buf [ hdrSize : ] , handle )
fh := ( * fileHandle ) ( unsafe . Pointer ( & buf [ 0 ] ) )
fh . Type = handleType
fh . Bytes = uint32 ( len ( handle ) )
return FileHandle { fh }
}
func ( fh * FileHandle ) Size ( ) int { return int ( fh . fileHandle . Bytes ) }
func ( fh * FileHandle ) Type ( ) int32 { return fh . fileHandle . Type }
func ( fh * FileHandle ) Bytes ( ) [ ] byte {
n := fh . Size ( )
if n == 0 {
return nil
}
return unsafe . Slice ( ( * byte ) ( unsafe . Pointer ( uintptr ( unsafe . Pointer ( & fh . fileHandle . Type ) ) + 4 ) ) , n )
}
// NameToHandleAt wraps the name_to_handle_at system call; it obtains
// a handle for a path name.
func NameToHandleAt ( dirfd int , path string , flags int ) ( handle FileHandle , mountID int , err error ) {
var mid _C_int
// Try first with a small buffer, assuming the handle will
// only be 32 bytes.
size := uint32 ( 32 + unsafe . Sizeof ( fileHandle { } ) )
didResize := false
for {
buf := make ( [ ] byte , size )
fh := ( * fileHandle ) ( unsafe . Pointer ( & buf [ 0 ] ) )
fh . Bytes = size - uint32 ( unsafe . Sizeof ( fileHandle { } ) )
err = nameToHandleAt ( dirfd , path , fh , & mid , flags )
if err == EOVERFLOW {
if didResize {
// We shouldn't need to resize more than once
return
}
didResize = true
size = fh . Bytes + uint32 ( unsafe . Sizeof ( fileHandle { } ) )
continue
}
if err != nil {
return
}
return FileHandle { fh } , int ( mid ) , nil
}
}
// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
// file via a handle as previously returned by NameToHandleAt.
func OpenByHandleAt ( mountFD int , handle FileHandle , flags int ) ( fd int , err error ) {
return openByHandleAt ( mountFD , handle . fileHandle , flags )
}
// Klogset wraps the sys_syslog system call; it sets console_loglevel to
// the value specified by arg and passes a dummy pointer to bufp.
func Klogset ( typ int , arg int ) ( err error ) {
var p unsafe . Pointer
_ , _ , errno := Syscall ( SYS_SYSLOG , uintptr ( typ ) , uintptr ( p ) , uintptr ( arg ) )
if errno != 0 {
return errnoErr ( errno )
}
return nil
}
// RemoteIovec is Iovec with the pointer replaced with an integer.
// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
// refers to a location in a different process' address space, which
// would confuse the Go garbage collector.
type RemoteIovec struct {
Base uintptr
Len int
}
//sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
//sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
//sys PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN
//sys PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD
//sys PidfdSendSignal(pidfd int, sig Signal, info *Siginfo, flags int) (err error) = SYS_PIDFD_SEND_SIGNAL
//sys shmat(id int, addr uintptr, flag int) (ret uintptr, err error)
//sys shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error)
//sys shmdt(addr uintptr) (err error)
//sys shmget(key int, size int, flag int) (id int, err error)
//sys getitimer(which int, currValue *Itimerval) (err error)
//sys setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error)
// MakeItimerval creates an Itimerval from interval and value durations.
func MakeItimerval ( interval , value time . Duration ) Itimerval {
return Itimerval {
Interval : NsecToTimeval ( interval . Nanoseconds ( ) ) ,
Value : NsecToTimeval ( value . Nanoseconds ( ) ) ,
}
}
// A value which may be passed to the which parameter for Getitimer and
// Setitimer.
type ItimerWhich int
// Possible which values for Getitimer and Setitimer.
const (
ItimerReal ItimerWhich = ITIMER_REAL
ItimerVirtual ItimerWhich = ITIMER_VIRTUAL
ItimerProf ItimerWhich = ITIMER_PROF
)
// Getitimer wraps getitimer(2) to return the current value of the timer
// specified by which.
func Getitimer ( which ItimerWhich ) ( Itimerval , error ) {
var it Itimerval
if err := getitimer ( int ( which ) , & it ) ; err != nil {
return Itimerval { } , err
}
return it , nil
}
// Setitimer wraps setitimer(2) to arm or disarm the timer specified by which.
// It returns the previous value of the timer.
//
// If the Itimerval argument is the zero value, the timer will be disarmed.
func Setitimer ( which ItimerWhich , it Itimerval ) ( Itimerval , error ) {
var prev Itimerval
if err := setitimer ( int ( which ) , & it , & prev ) ; err != nil {
return Itimerval { } , err
}
return prev , nil
}
//sysnb rtSigprocmask(how int, set *Sigset_t, oldset *Sigset_t, sigsetsize uintptr) (err error) = SYS_RT_SIGPROCMASK
func PthreadSigmask ( how int , set , oldset * Sigset_t ) error {
if oldset != nil {
// Explicitly clear in case Sigset_t is larger than _C__NSIG.
* oldset = Sigset_t { }
}
return rtSigprocmask ( how , set , oldset , _C__NSIG / 8 )
}
/ *
* Unimplemented
* /
// AfsSyscall
// ArchPrctl
// Brk
// ClockNanosleep
// ClockSettime
// Clone
// EpollCtlOld
// EpollPwait
// EpollWaitOld
// Execve
// Fork
// Futex
// GetKernelSyms
// GetMempolicy
// GetRobustList
// GetThreadArea
// Getpmsg
// IoCancel
// IoDestroy
// IoGetevents
// IoSetup
// IoSubmit
// IoprioGet
// IoprioSet
// KexecLoad
// LookupDcookie
// Mbind
// MigratePages
// Mincore
// ModifyLdt
// Mount
// MovePages
// MqGetsetattr
// MqNotify
// MqOpen
// MqTimedreceive
// MqTimedsend
// MqUnlink
// Mremap
// Msgctl
// Msgget
// Msgrcv
// Msgsnd
// Nfsservctl
// Personality
// Pselect6
// Ptrace
// Putpmsg
// Quotactl
// Readahead
// Readv
// RemapFilePages
// RestartSyscall
// RtSigaction
// RtSigpending
// RtSigqueueinfo
// RtSigreturn
// RtSigsuspend
// RtSigtimedwait
// SchedGetPriorityMax
// SchedGetPriorityMin
// SchedGetparam
// SchedGetscheduler
// SchedRrGetInterval
// SchedSetparam
// SchedYield
// Security
// Semctl
// Semget
// Semop
// Semtimedop
// SetMempolicy
// SetRobustList
// SetThreadArea
// SetTidAddress
// Sigaltstack
// Swapoff
// Swapon
// Sysfs
// TimerCreate
// TimerDelete
// TimerGetoverrun
// TimerGettime
// TimerSettime
// Tkill (obsolete)
// Tuxcall
// Umount2
// Uselib
// Utimensat
// Vfork
// Vhangup
// Vserver
// _Sysctl